

CITTÀ DI MOLFETTA

SINDACO

ASS.RE ALLA P.L. E ALL'AMBIENTE

R.U.P. - DIR. AREA 1 P.L.

Tommaso Minervini

Caterina Roselli

dott. Cosimo Aloia

PIANO GENERALE DEL TRAFFICO URBANO

ELABORATO

GR

REDAZIONE

ADOZIONE

APPROVAZIONE

PROGETTAZIONE

ANALISI DI DETTAGLIO DEI LOS DELLE INTERSEZIONI
ALLO STATO DI PROGETTO

DICEMBRE 2023

S.I.P.E.T. SOC. COOP. S.T.P.

arch. Nicola D'Errico arch. Enrico Eugenio D'Errico

CONSULENZA URBANISTICA E TRASPORTISTICA arch. Michele Amato ing. Claudio Troisi

DATA ANALYST urb. Antonio Gioia

CONSULENZA VAS urb. Morena Scrascia

		Sta	to di progetto, ora	di punta della m	nattina invernale								_
GEOMETRIA DELL'I	NTERSEZIONE						1	7/10	C	279			9
ACCESSO	NORD	SUD	OVEST		1		٧.	OF A STATE	S MENTS	meinter .	6.00	189 BV	
Toponimo	Via Germano	Via Terlizzi	C.so Fornari					1	P'm	BURNESSA PRAIS	1 1/6	N	ı
Larghezza (m)	3	6	4.5				20		O STATE OF THE PARTY OF THE PAR	9/00/2		O nnarge	Ä
N. corsie	1	2	2				Sec.	w 🗪	100	The state of		20	ı
MISURA DEI FLUSS	l				•		- The -	1000		and the same		Minn	Z
		attraversamento	svolta a dx	svolta a sx	totale]	The same	A STREET					١
		Qat	Qdx	Qsx	Qtot]			Johnson V.	7)	-		Ī
NORD	auto e veic com	162	299		461]			111		1	The same	ĺ
	veic. Pes.				0	1					-		
	bus	5	1		6	ļ	1	1/2	fil I li	1/6/10	0-10	- TO be	ĺ
	totale	167	300	0	467	I	196		16	State Book	cipus, All		l
SUD	auto e veic com	52	563	250	865	1	-	1/8	S	5/1/2	7	Part I	I
	veic. Pes.				0		112	Maria Carlo	burney for	antiti AS	- (March 1)	- 11 A	
	bus	1	3	6	10			Livello di s	servizio			Ritardo to	ı
	totale	53	566	256	875]		A					
OVEST	auto e veic com	367	134	5	506]		В					1
	veic. Pes.				0]		C					
	bus	1	2		3]		D					>
	totale	368	136	5	509	1		Е					>
EST	auto e veic com				0	1		F					I
	veic. Pes.				0	1 '							•
	bus				0	1							
	totale	0	0	0	0	1							
CALCOLO FLUSSI D		= S01N1fw1fHV1fg1fp1f				1							
	Via	Gr. Corsie	L (m)	\$0 (v/h)	N	Loors. (ft)	fw	% HV	firv	%0	fo	1	
Accesso NORD	Via Germano	TR	3.00	1900	1.00	9.84	0.928	1	0.987	0	1.0000	1	
Accesso OVEST	C.so Fornari	R-TL	4.50	1900	2.00	7.38	1.000	1	0.994	0	1.0000]	
Accesso SUD	Via Terlizzi	R-TL	6.00	1900	2.00	9.84	0.928	1	0.989	0	1.0000]	
]	
	fp	Neus	fbb	fa	PRT	PEDS	PRTA	fRT	PLT	fLT	S (v/h)]	
Accesso NORD	1.000	6	0.976	0.999	0.28	100	0.64	0.953	0.00	1.00	1618	1	
Accesso OVEST	1.000	3	0.994	0.999	0.01	100	0.27	0.999	0.01	1.00	3744	l	
Accesso SUD	1.000	10	0.980	0.999	0.00	100	0.65	1.000	0.29	0.99	3364		
NDICI DI CADICCI I	on tile											J	
INDICI DI CARICO: I		14-23	64-50	1-	1	ELCE 2	Gr. Courie	46-23	61.00	1-	1		
FASE 1	Gr. Corsie R-TL	f (v/h) 509	S (v/h) 3744	0.14		FASE 2	Gr. Corsie	f (v/h) 875	S (v/h)	0.26	1		
Accesso OVEST	K-IL	309	3/44	0.14		Accesso SUD Accesso NORD	R-TL TR	467	3364 1618	0.26	1		
CAPACITA', TEMPI I	MEDI DI ATTESA LE	VELLI DI SERVIZIO			1	Accesso NORD	IK	407	1010	0.29	J		
CAPACITA, TEMPTI	FASE	Si (v/h)	gi/C	Ic	CAPi (v/h)	Xi	d1 [sec]	CF	m	d2 [sec]	di [sec]	LOSi	1
Accesso NORD	2	1618	0.52	0.29	848	0.550	10.9	1.0	16	0.6	11.5	В	ı
Accesso OVEST	1	3744	0.52	0.14	1963	0.259	9.0	1.0	16	0.0	9.0	В	ı
Accesso SUD	2	3364	0.52	0.26	1764	0.496	10.5	1.0	16	0.0	10.6	В	ı
													ı
	d intersezione	LOSint.		ΔLOS							-		í
	10.39	В	1	0.60	1								
	10.00			4144									

		S	tato di progetto, or	ra di punta della	sera invernale					1			
GEOMETRIA DELL	INTERSEZIONE						350	77.0	- C	219		100	Part of the same
ACCESSO	NORD	SUD	OVEST		1		٠.		Atawaya	molther	6. 1		Jan Sale
Toponimo	Via Germano	Via Terlizzi	C.so Fornari		l				P '00	CANADA PROPERTY.		N	
Larghezza (m)	3	6	4.5		l		20		Carried Contract	7/8/6/2		Onegagos ()	
N. corsie	1	2	2				1804	w 🗪				200	
MISURA DEI FLUS	SI				•	_	675	CON A		1		alone.	
		attraversamento	svolta a dx	svolta a sx	totale]	The same	S REPORT	10010th 100				
		Qat	Qdx	Qsx	Qtot				Citate y	11		a residence	1159
NORD	auto e veic com	149	230		379						A STATE OF	COMME	Marie Control
	veic. Pes.				0		168			6	VA	Page 1	1
	bus	2	1		3		1	15	11 1 6	mole.	7		
	totale	151	231	0	382				104	OF STREET	252		E
SUD	auto e veic com	96	564	370	1030	1	1	1/E	5		0	Section 1	
	veic. Pes.				0			-		The second			
	bus	1	4	1	6			Livello di s	servizio			Pitardo tot	ale medio (sec/veic
	totale	97	568	371	1036			A					≤5
OVEST	auto e veic com	385	192	4	581			В					>5e≤15
	veic. Pes.				0			С					15 e ≤ 25
	bus		1		1			D					25 e ≤ 40
	totale	385	193	4	582			Е)	40 e ≤ 60
EST	auto e veic com				0			F					> 60
	veic. Pes.				0] '							
	bus				0]							
	totale	0	0	0	0	1							
CALCOLO FLUSSI	DI SATURAZIONE: S	= S0"N"fw"fHV"fg"fp"f	bb"fa"fRT"fLT			1							
	Via	Gr. Corsie	L (m)	\$0 (v/h)	N	Loors. (ft)	fw	% HV	fHV	% G	fg		
Accesso NORD	Via Germano	TR	3.00	1900	1.00	9.84	0.928	1	0.992	0	1.0000		
Accesso OVEST	C.so Fornari	R-TL	4.50	1900	2.00	7.38	1.000	0	0.998	0	1.0000		
Accesso SUD	Via Terlizzi	R-TL	6.00	1900	2.00	9.84	0.928	1	0.994	0	1.0000		
		News	6:		000	845.4	Be-T-	407	0.7	6-			
Accesso NORD	1,000	Neus	fbb 0.988	0.999	PRT 0.28	PEDS 100	PRTA 0.60	fRT 0.953	PLT 0.00	fLT 1,00	\$ (v/h) 1645		
Accesso OVEST	1.000	3	0.988	0.999	0.28	100	0.60	0.953	0.00	1.00	3775		
Accesso OVEST	1.000	6	0.998	0.999	0.01	100	0.55	1.000	0.36	0.98	3400		
A000000 500	2.000		0.500	0.555	0.00	100	0.33	1.000	0.30	0.50	3400		
INDICI DI CARICO:	lo= f/S											1	
FASE 1	Gr. Corsie	f (v/h)	S (v/h)	le le	1	FASE 2	Gr. Corsie	f (v/h)	S (v/h)	Ic	1		
Accesso OVEST	R-TL	582	3775	0.15	1	Accesso SUD	R-TL	1036	3400	0.30	1		
					1	Accesso NORD	TR	382	1645	0.23	1		
CAPACITA', TEMPI	MEDI DI ATTESA, LI	VELLI DI SERVIZIO			•								
	FASE	Si (v/h)	g/C	Ic	CAPi (vih)	Xi	d1 [sec]	CF	m	d2 [sec]	di [sec]	LOSi	
Accesso NORD	2	1645	0.52	0.23	863	0.443	10.1	1.0	16	0.2	10.3	В	
Accesso OVEST	1	3775	0.52	0.15	1980	0.294	9.1	1.0	16	0.0	9.2	В	
Accesso SUD	2	3400	0.52	0.30	1783	0.581	11.1	1.0	16	0.4	11.5	В	
	d intersezione	LO\$int.	4	ΔLOS									
	10.59	В		0.19									

Second Color Sec			S	tato di progetto, or	a di punta della	mattina estiva								
Toponimo	GEOMETRIA DELL'I	NTERSEZIONE						2500	N 1000	SOUTHWEST OF THE PARTY OF	2/9			
As As As As As As As As	ACCESSO	NORD	SUD	OVEST				1 Ou	500 X	Acceptance	munithers	6.		
Notation 1	Toponimo	Via Germano	Via Terlizzi	C.so Fornari						9'0	account to Venue	1 4 /	N	10
Accesso NPRD Via Germano Via Refixed Via Recesso OVEST Cosp Company Cosp Cosp Cosp Cosp Cosp Cosp Cosp Cosp	Larghezza (m)	3	6	4.5					101	To Sales	Q May		Оконорода	alternative and the
Accesso NORD Val Germano Val Legal	N. corsie	1	2	2					M S					1000
ORD	MISURA DEI FLUSS	I				•		17 -			Pos		altere.	
Sundo evelcom 195 291			attraversamento		svolta a sx]	The same	Same of the last	terrorito de				1
vetc. Pets					Qsx					Militario V	1)	700		11
Dus	NORD		195	291						111		Acres 1	Con.	11/8
State 198 292 0							1				12 18 1	-	The same of the sa	C
Sample S								1	1/2		775	0	1	The same of
Veic. Pes.										6	prient made	nigoto, All		W E
Dus	SUD		91	599	268			24	1/8	S	SCA	7		7.3
Second Color Colo								110	1115	principle.	新程		2 4	
Sutice Position 172 208 4 384									Livello di :	servizio			Ritardo to	
VeiC. Pes. 0 0 0 0 0 0									A					
Dus 1	OVEST	auto e veic com	172	208	4									
EST auto e veic com		veic. Pes.					j l							
Section Company Comp		bus	1	1		2]							
veic. Pes. 0 0 0 0 0 0 0 0 0		totale	173	209	4	386]		Е				3	> 40 e ≤ 60
Dus	EST	auto e veic com				0]		F					> 60
Dus		veic. Pes.				0	1 '							
Totale O O O O O O O O O						0	1							
CALCOLO FLUSSI DI SATURAZIONE: S = S0*N*fw*fhv*fg*fp*fbb*fa*ff*ff.T Via Gr. Corsie L(m) S0 (vih) N Loors. (ft) fw % HV fhV % G fg fg fg fg fg fg fg			0	0	0		1							
Via Gr. Corsie L(m) S0 (v/h) N Loors. (ft) fw % HV fhV % G fg	CALCOLO FLUSSI (= S0*N*fw*fHV*fg*fp*f				1							
Accesso NORD Via Germano TR 3.00 1900 1.00 9.84 0.928 1 0.992 0 1.0000 Accesso OVEST C.so Fornari R-TL 4.50 1900 2.00 7.38 1.000 1 0.995 0 1.0000 Accesso SUD Via Teritzzi R-TL 6.00 1900 2.00 9.84 0.928 0 0.997 0 1.0000 Factor of Comparison of Compari					\$0 (v/h)	N	Loors. (ft)	fw	% HV	fHV	% G	fg]	
Accesso SUD Via Terlizzi R-TL 6.00 1900 2.00 9.84 0.928 0 0.997 0 1.0000	Accesso NORD	Via Germano	TR	3.00	1900	1.00		0.928	1	0.992	0	1.0000]	
The content of the	Accesso OVEST	C.so Fornari	R-TL	4.50	1900	2.00	7.38	1.000	1	0.995	0	1.0000]	
Accesso NORD 1.000 4 0.984 0.999 0.28 100 0.60 0.953 0.00 1.00 1638 Accesso OVEST 1.000 2 0.996 0.999 0.01 100 0.54 0.999 0.01 1.00 3754 Accesso SUD 1.000 3 0.994 0.999 0.00 100 0.62 1.000 0.28 0.99 3443 NDICI DI CARICO: Ice f/S FASE 1 Gr. Corsie f (v/h) S (v/h) Ic Accesso OVEST R-TL 386 3754 0.10	Accesso SUD	Via Terlizzi	R-TL	6.00	1900	2.00	9.84	0.928	0	0.997	0	1.0000]	
Accesso NORD 1.000 4 0.984 0.999 0.28 100 0.60 0.953 0.00 1.00 1638 Accesso OVEST 1.000 2 0.996 0.999 0.01 100 0.54 0.999 0.01 1.00 3754 Accesso SUD 1.000 3 0.994 0.999 0.00 100 0.62 1.000 0.28 0.99 3443 NDICI DI CARICO: Ice f/S FASE 1 Gr. Corsie f (v/h) S (v/h) Ic Accesso OVEST R-TL 386 3754 0.10														
Accesso OVEST 1.000 2 0.996 0.999 0.01 100 0.54 0.999 0.01 1.00 3754 Accesso SUD 1.000 3 0.994 0.999 0.00 100 0.62 1.000 0.28 0.99 3443 NDICI DI CARICO: Ie= f/S FASE 1 Gr. Corsie f (v/h) S (v/h) Ic Accesso OVEST R-TL 386 3754 0.10 Accesso SUD R-TL 961 3443 0.28 Accesso NORD TR 490 1638 0.30 CAPACITA', TEMPI MEDI DI ATTESA, LIVELLI DI SERVIZIO FASE Si (v/h) gi/C Ic CAPi (v/h) Xi di [sec] CF m d2 [sec] di [sec] LOSi Accesso NORD 2 1638 0.52 0.30 859 0.571 11.0 1.0 16 0.7 11.7 B Accesso OVEST 1 3754 0.52 0.10 1969 0.196 8.6 1.0 16 0.0 8.6 B Accesso SUD 2 3443 0.52 0.28 1805 0.532 10.7 1.0 16 0.2 11.0 B d intersezione LOSint. ΔLOS														
Accesso SUD 1.000 3 0.994 0.999 0.00 100 0.62 1.000 0.28 0.99 3443 NDICI DI CARICO: Ie= f/S FASE 1 Gr. Corsie f (v/h) S (v/h) Ic Accesso OVEST R-TL 386 3754 0.10 CAPACITA', TEMPI MEDI DI ATTESA, LIVELLI DI SERVIZIO FASE Si (v/h) gl/C Ic CAPI (v/h) Xi d1 [sec] CF m d2 [sec] di [sec] LOSi Accesso NORD 2 1638 0.52 0.30 859 0.571 11.0 1.0 16 0.7 11.7 B Accesso OVEST 1 3754 0.52 0.10 1969 0.196 8.6 1.0 16 0.0 8.6 B Accesso SUD 2 3443 0.52 0.28 1805 0.532 10.7 1.0 16 0.2 11.0 B														
NDICI DI CARICO: Ic= f/S FASE 1 Gr. Corsie f (v/h) S (v/h) Ic Accesso OVEST R-TL 386 3754 0.10 Accesso SUD R-TL 961 3443 0.28 Accesso NORD TR 490 1638 0.30 Accesso NORD TR 490 Accesso NORD TR 490 Accesso NORD TR 490 Accesso														
FASE 1 Gr. Corsie f (v/h) S (v/h) Ic Accesso OVEST R-TL 386 3754 0.10 CAPACITA', TEMPI MEDI DI ATTESA, LIVELLI DI SERVIZIO FASE Si (v/h) gi/C Ic CAPi (v/h) Xi di [sec] CF m d2 [sec] di [sec] LOSi Accesso OVEST 1 3754 0.52 0.10 1969 0.196 8.6 1.0 16 0.7 11.7 B Accesso SUD R-TL 961 3443 0.28 CAPACITA', TEMPI MEDI DI ATTESA, LIVELLI DI SERVIZIO FASE Si (v/h) gi/C Ic CAPi (v/h) Xi di [sec] CF m d2 [sec] di [sec] LOSi Accesso OVEST 1 3754 0.52 0.10 1969 0.196 8.6 1.0 16 0.7 11.7 B Accesso OVEST 1 3754 0.52 0.28 1805 0.532 10.7 1.0 16 0.2 11.0 B d intersezione LOSint. ΔLOS	Accesso SUD	1.000	3	0.994	0.999	0.00	100	0.62	1.000	0.28	0.99	3443		
FASE 1 Gr. Corsie f (v/h) S (v/h) Ic Accesso OVEST R-TL 386 3754 0.10 CAPACITA', TEMPI MEDI DI ATTESA, LIVELLI DI SERVIZIO FASE Si (v/h) gi/C Ic CAPi (v/h) Xi di [sec] CF m d2 [sec] di [sec] LOSi Accesso OVEST 1 3754 0.52 0.10 1969 0.196 8.6 1.0 16 0.7 11.7 B Accesso SUD R-TL 961 3443 0.28 CAPACITA', TEMPI MEDI DI ATTESA, LIVELLI DI SERVIZIO FASE Si (v/h) gi/C Ic CAPi (v/h) Xi di [sec] CF m d2 [sec] di [sec] LOSi Accesso OVEST 1 3754 0.52 0.10 1969 0.196 8.6 1.0 16 0.7 11.7 B Accesso OVEST 1 3754 0.52 0.28 1805 0.532 10.7 1.0 16 0.2 11.0 B d intersezione LOSint. ΔLOS	INDICEDI CADICO: 1	f/S											J	
Accesso OVEST R-TL 386 3754 0.10 Accesso SUD R-TL 961 3443 0.28 Accesso NORD TR 490 1638 0.30 CAPACITA', TEMPI MEDI DI ATTESA, LIVELLI DI SERVIZIO FASE Si (v/h) gi/C Ic CAPi (v/h) Xi di [sec] CF m d2 [sec] di [sec] LOSi Accesso NORD 2 1638 0.52 0.30 859 0.571 11.0 1.0 16 0.7 11.7 B Accesso OVEST 1 3754 0.52 0.10 1969 0.196 8.6 1.0 16 0.0 8.6 B Accesso SUD 2 3443 0.52 0.28 1805 0.532 10.7 1.0 16 0.2 11.0 B d intersezione LOSint. ΔLOS			f (w/h)	S (m/h)	lo lo	1	EACE 2	Gr Carris	# (w/b)	C /u/hi	In.	1		
Accesso NORD TR 490 1638 0.30 CAPACITA', TEMPI MEDI DI ATTESA, LIVELLI DI SERVIZIO FASE Si (v/h) gi/C lc CAPi (v/h) Xi di [sec] CF m d2 [sec] di [sec] LOSi Accesso NORD 2 1638 0.52 0.30 859 0.571 11.0 1.0 16 0.7 11.7 B Accesso OVEST 1 3754 0.52 0.10 1969 0.196 8.6 1.0 16 0.0 8.6 B Accesso SUD 2 3443 0.52 0.28 1805 0.532 10.7 1.0 16 0.2 11.0 B d intersezione LOSint. ΔLOS														
CAPACITA', TEMPI MEDI DI ATTESA, LIVELLI DI SERVIZIO FASE Si (v/h) gi/C Ic CAPI (v/h) Xi di [sec] CF m d2 [sec] LOSi Accesso NORD 2 1638 0.52 0.30 859 0.571 11.0 1.0 16 0.7 11.7 B Accesso OVEST 1 3754 0.52 0.10 1969 0.196 8.6 1.0 16 0.0 8.6 B Accesso SUD 2 3443 0.52 0.28 1805 0.532 10.7 1.0 16 0.2 11.0 B d intersezione LOSint. Δ LOS Δ <	Accesso OVEST	K-IL	300	3/34	0.10									
FASE Si (v/h) gi/C Ic CAPi (v/h) Xi di [sec] CF m d2 [sec] di [sec] LOSi	CAPACITA', TEMPLI	MEDI DI ATTESA LI	VELLI DI SERVIZIO			ı	Accesso NORD	IIX	450	1030	0.30	1		
Accesso NORD 2 1638 0.52 0.30 859 0.571 11.0 1.0 16 0.7 11.7 B Accesso OVEST 1 3754 0.52 0.10 1969 0.196 8.6 1.0 16 0.0 8.6 B Accesso SUD 2 3443 0.52 0.28 1805 0.532 10.7 1.0 16 0.2 11.0 B d intersezione LOSint. Δ LOS Δ	on Adira, ILMFI			gi/C	le.	CAPi (v/h)	Xi	d1 [sec]	CF	m	d2 [sec]	di [sec]	LOSI	l
Accesso OVEST 1 3754 0.52 0.10 1969 0.196 8.6 1.0 16 0.0 8.6 B Accesso SUD 2 3443 0.52 0.28 1805 0.532 10.7 1.0 16 0.2 11.0 B d intersezione LOSint. Δ LOS Δ LOS Δ Δ LOS Δ LOS<	Accesso NORD													
Accesso SUD 2 3443 0.52 0.28 1805 0.532 10.7 1.0 16 0.2 11.0 B d intersezione LOSint. ΔLOS														
d intersezione LOSint. ΔLOS														
		d intersezione	LOSint.		ΔLOS									'
		10.68	В	1	0.76	1								

			Stato di progetto, o	ra di punta dell	a sora estiva							
SEOMETRIA DELL'	INTERSEZIONE							77				CONTRACTOR AND
ACCESSO	NORD	SUD	OVEST		1		4	9	Spirit Street			
Toponimo	Via Germano	Via Terlizzi	C.so Fornari				No.		0		0 // 1	N N
Larghezza (m)	3	6	4.5						0	1		and the same of the same of
N. corsie	1	2	2				97 W					
ISURA DEI FLUSS	a .				•		13/2			The second second		
		attraversamento	svolta a dx	svolta a sx	totale	1	-	7				
		Qut	Qdx	Qsx	Qtot				7	1		
ORD	auto e veic com	146	374		520	-		7/4		11/19	la .	No.
	weic. Pes.				0	4	1				-/3	
	bus	2	2		4		1	1 /		0.0	-	
	totale	148	376	0	524				100	The same	-	AND F
JO	auto e veis com	94	255	853	1202	4	120		5 70	A COL		ALC: NO THE REAL PROPERTY.
	weic. Pes.				0	1	77.40		Comment of Contra	100 PT 1740		and the same of the same
	bus	1	2	2	5-			Livello di	servizio			Ritardo totale me
	totale	95	257	855	1207			A				65
VEST	auto e veic com	141	266	3	410			0				>5e≤
	veic. Pes.				0	1		C				> 15 e s
	bus		1		3.	1		0				> 25 e s
	totale	141	267	3	411	1		E				> 40 o s
T	auto e veic com				0	1						>60
	veic. Pes.				0	1						
	bus					1						
	totale	0	0	0	0							
ALCOLO FLUSSI		= SeriorNethernighten		-	-	-						
	Via	Gr. Corsie	L (m)	50 (v/h)	N	Loors (#0	1w	% mv	tion	N G	fg	ı
Accesso NORD	Via Germano	TR	3.00	1900	1.00	9.84	0.928	1	0.992	0	1,0000	
Accesso CVEST	C.so Fomari	R-TL	4.50	1900	2.00	7.38	1.000	0	0.998	0	1,0000	
Accesso SUD	Via Terfizzi	R-TL	6.00	1900	2.00	9.84	0.928	0	0.996	0	1,0000	
	16	Neus	file	The Control	PRY	PEDS	Pata	for	PLT	N/T	S (v/h)	
Accesso NORD	1.000	- 4	0.984	0.999	0.28	100	0.72	0.954	0.00	1.00	1641	
Accesso OVEST	1.000	1	0.998	0.999	0.01	100	0.65	0.999	0.01	1.00	3773	
Accesso SUD	1.000	5	0.990	0.999	0.00	100	0.21	1,000	0.71	0.97	3354	
												ı
DICI DI CARICO:	k= 65				_							
FASE 1	Gr. Corsie	f (wh)	5 (v/h)	No.	1	FASE 2	Gr. Corsie	f (wh)	5 (v/h)	No.		
Accesso OVEST	8-TL	411	3773	0.11	_	Accesso SUD	R-TL	1207	3354	0.34		
					J	Accesso NORD	TR	524	1841	0.32	J	
APACITA', TEMPI	MEDI DI ATTESA, U											
	FASE	Si (v/h)	g/C	le	CAPI (viti)	Xi	ds (sec)	CF	m	dz (sec)	di [sec]	LOS
Accesso NORD	2	1641	0.52	0.32	861	0.609	11.4	1.0	16	0.9	12.3	В
Accesso OVEST	1	3773	0.52	0.11	1979	0.208	8.7	1.0	16	0.0	8.7	В
Accesso SUO	2	3354	0.52	0.36	1759	0.686	12.1	1.0	36	0.8	12.9	0
	d intersezione	LOSins.		A LOS								
	11.93	8		0.77								

MISURA DEI I	FLUSSI				
		attraversamento Qat	svolta a dx Qdx	svolta a sx Qsx	totale Qtot
NORD	auto e veic com	105	89		194
	veic. Pes.	3	3		6
	bus				0
5	totale	108	92	0	200
SUD	auto e veic com	437		85	522
	veic. Pes.	11		2	13
	bus	3			3
	totale	451	0	87	538
OVEST	auto e veic com		18	91	109
	veic. Pes.				0
-	bus				0
	totale	0	18	91	109

Livello di servizio	Ritardo totale medio [sec/veic]
A	≤5
В	>5e≤15
С	> 15 e ≤ 25
D	> 25 e ≤ 40
E	> 40 e ≤ 60
F	> 60

CALCOLO FLUSSI DI	SATURAZIONE: S	= SorNifwifHvifgifpifobif.	a"fRT"fLT			1					
	Via	Gr. Corsie	L (m)	S0 (v/h)	N	Loors. (ft)	fw	% HV	fHV	% 0	fo
Accesso NORD	Fiorino	TR	3.50	1900	1	11.48	0.983	3	0.971	0	1.0000
Accesso OVEST	Baccarini	RL	5.00	1900	2	8.20	0.873	0	1.000	0	1.0000
Accesso SUD	Fiorino	TL	3.50	1900	1	11.48	0.983	3	0.971	0	1.0000
	fp	Neus	fbb	fa	PRT	PEDS	PRTA	fRT	PLT	fLT	S (v/h)
Accesso NORD	1.000	0	1.000	0.999	0.28	100	0.46	0.951	0.00	1.00	1722
Accesso OVEST	1.000	0	1.000	0.999	0.01	100	0.17	0.998	0.83	0.96	3178
Accesso SUD	1.000	3	0.988	0.999	0.00	100	0.00	1.000	0.16	0.99	1775

INDICI DI CARICO: lo	= f/S			
FASE 1	Gr. Corsie	f (v/h)	S (v/h)	Ic
Accesso OVEST	RL	109	3178	0.03

10.58

Accesso SUD	TL	538	1775	0.30]							
Accesso NORD	TR	200	1722	0.12]							
CAPACITA', TEMPI N	MEDI DI ATTESA, LIV	ELLI DI SERVIZIO										
	FASE	Si (v/h)	gi/C	Ic	CAPi (vih)	X	d1 [sec]	CF	m	d2 [sec]	di [sec]	LOS
Accesso NORD	2	1722	0.52	0.12	903	0.222	8.8	1.0	16	0.0	8.8	В
Accesso OVEST	1	3178	0.52	0.03	1666	0.065	8.0	1.0	16	0.0	8.0	В
Accesso SUD	2	1775	0.52	0.30	931	0.578	11.1	1.0	16	0.7	11.8	В
	d intersezione	LOSint		ALOS								

FASE 2

		Stato o	di progetto, ora di p	ounta della matti	na invernale									
GEOMETRIA DELL'II	NTERSEZIONE								The No.				19	
ACCESSO	NORD	SUD	OVEST	-				(a)	5	et Steken	1			
Toponimo	Via Fiorino	Via Fiorino	Via Baccarini					1			ASS. A		1/2	
Larghezza (m)	3.5	3.5	5						To les		(5/S)0	10 B	1	
N, corsie	1	1	2					100	San Comment		3000	11/18	District Co.	
iv. corsie			- 2					1/4	19 -	San		1/1/0		
MISURA DEI FLUSSI	I	1						1				Commontantes	E A	
		attraversamento	svolta a dx	svolta a sx	totale			44.5	100	1	0			
2	<u> </u>	Qat	Qdx	Qsx	Qtot	8		(8)	200	Turbine yourse		No.	1 ton	
NORD	auto e veic com	83	72		155	,			5	Townson !	1/9		1021	
	veic. Pes.	4	4		8			1	9.31	100	1/2 30		Colonia Colonia	
	bus	1	1	8	2			*			/// P	A TON	000	
	totale	88	77	0	165			-		11/201	15/ 7	3117		
SUD	auto e veic com	426		57	483			4	- 400	1/10/16		11/4/		
	veic. Pes.	22		3	25		4	ba	0		CONTROL DE LA CONTROL	Sola .	英	
	bus	6			6			Livello	di servizio			Ritardo to	tale medio [sec/ve	ic]
	totale	454	0	60	514				A				≤5	
OVEST	auto e veic com		125	25	150	1			В				>5e≤15	
	veic. Pes.		1		0	š			С				> 15 e ≤ 25	
			1		1				D				> 25 e ≤ 40	
	hus				*									
	totale totale	0	126	25	151				F				> 40 e ≤ 60 > 60	
CALCOLO FLUSSI D	totale	6 = S0*N*fw*f#V*fg*fp*f	bb*fa*fRT*fLT						F					
	totale DI SATURAZIONE: S Via	G = S0"N"fw"fHV"fg"fp"f Gr. Corsie	bb"fa"fRT"fLT L (m)	Se (v/h)	N	Lcors. (ft)	fw	% HV	fhv	% G	fg 10000			
Accesso NORD	totale DI SATURAZIONE: S Via Fiorino	G = S0"N"fw"fHV"fg"fp"f Gr. Corsie TR	L (m)	So (v/h) 1900	N 1	11.48	0.983	% HV 6	fHV 0.943	0	1.0000			
Accesso NORD Accesso OVEST	DI SATURAZIONE: S Via Fiorino Baccarini	G = S0"N"fw"fhv"fg"fp"f Gr. Corsie TR RL	L (m) 3.50 5.00	So (v/h) 1900 1900	N 1 2	11.48 8.20	0.983 0.873	% HV 6	fHV 0.943 0.993	0	1.0000			
Accesso NORD	totale DI SATURAZIONE: S Via Fiorino Baccarini Fiorino	= So'N'fw'fhv'fg'fp'f Gr. Corsie TR RL TL	L (m) 3.50 5.00 3.50	So (v/h) 1900 1900	N 1 2 1	11.48 8.20 11.48	0.983 0.873 0.983	% HV 6 1 6	fHV 0.943 0.993 0.943	0 0	1.0000 1.0000 1.0000			
Accesso NORD Accesso OVEST Accesso SUD	totale DI SATURAZIONE: S Via Fiorino Baccarini Fiorino fp	S = S0"N"fw"fnv"fg"fp"f Gr. Corsie TR RL TL NBUS	3.50 5.00 3.50 5.00	So (v/h) 1900 1900 1900 fa	N 1 2 1 PRT	11.48 8.20 11.48 PEDS	0.983 0.873 0.983 PRTA	% HV 6 1 6 frt	fHV 0.943 0.993 0.943 PLT	0 0 0 flt	1.0000 1.0000 1.0000 S (v/h)			
Accesso NORD Accesso OVEST Accesso SUD Accesso NORD	Via Fiorino Baccarini Fiorino fp 1.000	G = So'N'fw'fhv'fg'fp'f Gr. Corsie TR RL TL NBUS 2	L (m) 3.50 5.00 3.50 fbb 0.992	So (v/h) 1900 1900 1900 fa 0.999	N 1 2 1 PRT 0.28	11.48 8.20 11.48 PEDS 100	0.983 0.873 0.983 PRTA 0.47	% HV 6 1 6 frt 0.951	fHV 0.943 0.993 0.943 PLT 0.00	0 0 0 fLT 1.00	1.0000 1.0000 1.0000 S (v/h) 1659			
Accesso NORD Accesso OVEST Accesso SUD Accesso NORD Accesso OVEST	Via Fiorino Baccarini Fiorino fp 1.000 1.000	G = Se*N'fw'fhv'fg'fp'f Gr. Corsie TR RL TL NBUS 2	L (m) 3.50 5.00 3.50 fbb 0.992 0.998	So (v/h) 1900 1900 1900 fa 0.999 0.999	N 1 2 1 PRT 0.28 0.01	11.48 8.20 11.48 PEDS 100 100	0.983 0.873 0.983 PRTA 0.47 0.83	% HV 6 1 6 fRT 0.951 0.999	fHV 0.943 0.993 0.943 PLT 0.00 0.17	0 0 0 fLT 1.00 0.99	1.0000 1.0000 1.0000 S (v/h) 1659 3256			
Accesso NORD Accesso OVEST Accesso SUD Accesso NORD	Via Fiorino Baccarini Fiorino fp 1.000	G = So'N'fw'fhv'fg'fp'f Gr. Corsie TR RL TL NBUS 2	L (m) 3.50 5.00 3.50 fbb 0.992	So (v/h) 1900 1900 1900 fa 0.999	N 1 2 1 PRT 0.28	11.48 8.20 11.48 PEDS 100	0.983 0.873 0.983 PRTA 0.47	% HV 6 1 6 frt 0.951	fHV 0.943 0.993 0.943 PLT 0.00	0 0 0 fLT 1.00	1.0000 1.0000 1.0000 S (v/h) 1659			
Accesso NORD Accesso OVEST Accesso SUD Accesso NORD Accesso OVEST Accesso OVEST Accesso SUD	Via Fiorino Baccarini Fiorino fp 1.000 1.000	G = Se*N'fw'fhv'fg'fp'f Gr. Corsie TR RL TL NBUS 2	L (m) 3.50 5.00 3.50 fbb 0.992 0.998	So (v/h) 1900 1900 1900 fa 0.999 0.999	N 1 2 1 PRT 0.28 0.01	11.48 8.20 11.48 PEDS 100 100	0.983 0.873 0.983 PRTA 0.47 0.83	% HV 6 1 6 fRT 0.951 0.999	fHV 0.943 0.993 0.943 PLT 0.00 0.17	0 0 0 fLT 1.00 0.99	1.0000 1.0000 1.0000 S (v/h) 1659 3256			
Accesso NORD Accesso OVEST Accesso SUD Accesso NORD Accesso OVEST Accesso OVEST Accesso SUD	Via Fiorino Baccarini Fiorino fp 1.000 1.000	G = Se*N'fw'fhv'fg'fp'f Gr. Corsie TR RL TL NBUS 2	L (m) 3.50 5.00 3.50 fbb 0.992 0.998	So (v/h) 1900 1900 1900 fa 0.999 0.999	N 1 2 1 PRT 0.28 0.01	11.48 8.20 11.48 PEDS 100 100	0.983 0.873 0.983 PRTA 0.47 0.83	% HV 6 1 6 fRT 0.951 0.999	fHV 0.943 0.993 0.943 PLT 0.00 0.17	0 0 0 fLT 1.00 0.99	1.0000 1.0000 1.0000 S (v/h) 1659 3256			
Accesso NORD Accesso OVEST Accesso SUD Accesso NORD Accesso OVEST Accesso SUD NDICI DI CARICO: Ic	totale DI SATURAZIONE: S Via Fiorino Baccarini Fiorino fp 1.000 1.000 1.000	G = So'N'fw'fhv'fg'fp'f Gr. Corsie TR RL TL NBUS 2 1 6	L (m) 3.50 5.00 3.50 fbb 0.992 0.998 0.976	So (v/h) 1900 1900 1900 fa 0.999 0.999	N 1 2 1 PRT 0.28 0.01	11.48 8.20 11.48 PEDS 100 100	0.983 0.873 0.983 PRTA 0.47 0.83	% HV 6 1 6 fRT 0.951 0.999	fHV 0.943 0.993 0.943 PLT 0.00 0.17	0 0 0 fLT 1.00 0.99	1.0000 1.0000 1.0000 S (v/h) 1659 3256			
Accesso NORD Accesso OVEST Accesso SUD Accesso NORD Accesso OVEST Accesso SUD NDICI DI CARICO: Ic FASE 1 Accesso OVEST	totale DI SATURAZIONE: S Via Fiorino Baccarini Fiorino fp 1.000 1.000 1.000 c= f/S Gr. Corsie	G = So'N'fw'fnv'fg'fp'f Gr. Corsie TR RL TL NBUS 2 1 6	L (m) 3.50 5.00 3.50 fbb 0.992 0.998 0.976	So (v/h) 1900 1900 1900 fa 0.999 0.999	N 1 2 1 PRT 0.28 0.01	11.48 8.20 11.48 PEDS 100 100	0.983 0.873 0.983 PRTA 0.47 0.83	% HV 6 1 6 fRT 0.951 0.999	fHV 0.943 0.993 0.943 PLT 0.00 0.17	0 0 0 fLT 1.00 0.99	1.0000 1.0000 1.0000 S (v/h) 1659 3256			
Accesso NORD Accesso OVEST Accesso SUD Accesso NORD Accesso OVEST Accesso SUD NDICI DI CARICO: Id FASE 1 Accesso OVEST FASE 2	Via Fiorino Baccarini Fiorino fp 1.000 1.000 1.000 G= fiS Gr. Corsie RL	G = So'N'fw'fhv'fg'fp'f Gr. Corsie TR RL TL NBUS 2 1 6	L (m) 3.50 5.00 3.50 fbb 0.992 0.998 0.976 S (v/h) 3256	So (v/h) 1900 1900 1900 1900 fa 0.999 0.999 0.999	N 1 2 1 PRT 0.28 0.01	11.48 8.20 11.48 PEDS 100 100	0.983 0.873 0.983 PRTA 0.47 0.83	% HV 6 1 6 fRT 0.951 0.999	fHV 0.943 0.993 0.943 PLT 0.00 0.17	0 0 0 fLT 1.00 0.99	1.0000 1.0000 1.0000 S (v/h) 1659 3256			
Accesso NORD Accesso OVEST Accesso SUD Accesso NORD Accesso OVEST Accesso SUD NDICI DI CARICO: Ic FASE 1 Accesso OVEST FASE 2 Accesso SUD	totale DI SATURAZIONE: S Via Fiorino Baccarini Fiorino fp 1.000 1.000 1.000 e= f/S Gr. Corsie RL	6 = So'N'fw'fhv'fg'fp'f Gr. Corsie TR RL TL NBUS 2 1 6	L (m) 3.50 5.00 3.50 fbb 0.992 0.998 0.976 S (v/h) 3256	So (v/h) 1900 1900 1900 1900 fa 0.999 0.999 0.999 1c 0.05	N 1 2 1 PRT 0.28 0.01	11.48 8.20 11.48 PEDS 100 100	0.983 0.873 0.983 PRTA 0.47 0.83	% HV 6 1 6 fRT 0.951 0.999	fHV 0.943 0.993 0.943 PLT 0.00 0.17	0 0 0 fLT 1.00 0.99	1.0000 1.0000 1.0000 S (v/h) 1659 3256			
Accesso NORD Accesso OVEST Accesso SUD Accesso NORD Accesso OVEST Accesso OVEST Accesso SUD NDICI DI CARICO: Ic FASE 1 Accesso OVEST FASE 2 Accesso SUD Accesso NORD	totale DI SATURAZIONE: S Via Fiorino Baccarini Filorino fp 1.000 1.000 1.000 C= f/S Gr. Corsie RL TL TR	S = S0'N'fw'fnv'fg'fp'f Gr. Corsie TR RL TL NBUS 2 1 6 f(v/h) 151	L (m) 3.50 5.00 3.50 fbb 0.992 0.998 0.976 S (v/h) 3256	So (v/h) 1900 1900 1900 1900 fa 0.999 0.999 0.999	N 1 2 1 PRT 0.28 0.01	11.48 8.20 11.48 PEDS 100 100	0.983 0.873 0.983 PRTA 0.47 0.83	% HV 6 1 6 fRT 0.951 0.999	fHV 0.943 0.993 0.943 PLT 0.00 0.17	0 0 0 fLT 1.00 0.99	1.0000 1.0000 1.0000 S (v/h) 1659 3256			
Accesso NORD Accesso OVEST Accesso SUD Accesso NORD Accesso OVEST Accesso OVEST Accesso SUD NDICI DI CARICO: Ic FASE 1 Accesso OVEST FASE 2 Accesso SUD Accesso NORD	totale DI SATURAZIONE: S Via Fiorino Baccarini Fiorino fp 1.000 1.000 1.000 c= f/S Gr. Corsie RL TL TR MEDI DI ATTESA, LI	G = So'N'fw'fnv'fg'fp'f Gr. Corsie TR RL TL NBUS 2 1 6 f(v/h) 151 514 165 VELLI DI SERVIZIO	L (m) 3.50 5.00 3.50 fbb 0.992 0.998 0.976 S (v/h) 3256	So (v/h) 1900 1900 1900 fa 0.999 0.999 0.999 Ic 0.05	N 1 2 1 PRT 0.28 0.01 0.00	11.48 8.20 11.48 PEDS 100 100	0.983 0.873 0.983 PRTA 0.47 0.83 0.00	% HV 6 1 6 fRT 0.951 0.999 1.000	fHV 0.943 0.993 0.943 PLT 0.00 0.17 0.12	0 0 0 ft.T 1.00 0.99 0.99	1.0000 1.0000 1.0000 S (v/h) 1659 3256 1707			
Accesso NORD Accesso OVEST Accesso SUD Accesso NORD Accesso OVEST Accesso OVEST Accesso SUD NDICI DI CARICO: Id FASE 1 Accesso OVEST FASE 2 Accesso SUD Accesso NORD Accesso NORD CAPACITA', TEMPI M	totale Via Fiorino Baccarini Fiorino 1.000 1.000 1.000 2.000 TL Gr. Corsie RL TL TR MEDI DI ATTESA, LI FASE	G = So'N'fw'fhv'fg'fp'f Gr. Corsie TR RL TL NBUS 2 1 6 f(v/h) 151 514 165 VELLI DI SERVIZIO Si (v/h)	L (m) 3.50 5.00 3.50 fbb 0.992 0.998 0.976 S (v/h) 3256 1707 1659	So (v/h) 1900 1900 1900 fa 0.999 0.999 0.999 Ic 0.05	N 1 2 1 PRT 0.28 0.01 0.00	11.48 8.20 11.48 PEDS 100 100 100	0.983 0.873 0.983 PRTA 0.47 0.83 0.00	% HV 6 1 6 fRT 0.951 0.999 1.000	fHV 0.943 0.993 0.943 PLT 0.00 0.17 0.12	0 0 0 ft.T 1.00 0.99 0.99	1.0000 1.0000 1.0000 S (v/h) 1659 3256 1707	LOSi		
Accesso NORD Accesso OVEST Accesso SUD Accesso NORD Accesso OVEST Accesso OVEST Accesso SUD NDICI DI CARICO: Ic FASE 1 Accesso OVEST FASE 2 Accesso SUD Accesso NORD Accesso NORD Accesso NORD	totale Via Fiorino Baccarini Fiorino 1.000 1.000 1.000 From Corsie RL TL TR MEDI DI ATTESA, LI FASE 2	G = So'N'fw'fhv'fg'fp'f Gr. Corsie TR RL TL NBUS 2 1 6 f(v/h) 151 514 165 VELLI DI SERVIZIO Si (v/h) 1659	L (m) 3.50 5.00 3.50 fbb 0.992 0.998 0.976 S (v/h) 3256 1707 1659 gi/C 0.52	So (v/h) 1900 1900 1900 fa 0.999 0.999 0.999 lc 0.05	N 1 2 1 PRT 0.28 0.01 0.00 CAPi (v/h) 870	11.48 8.20 11.48 PEDS 100 100 100	0.983 0.873 0.983 PRTA 0.47 0.83 0.00	% HV 6 1 6 fRT 0.951 0.999 1.000	fHV 0.943 0.943 0.943 PLT 0.00 0.17 0.12	0 0 0 ftT 1.00 0.99 0.99	1.0000 1.0000 1.0000 S (v/h) 1659 3256 1707 di [sec]	LOSi B		
Accesso NORD Accesso OVEST Accesso SUD Accesso NORD Accesso OVEST Accesso OVEST Accesso SUD NDICI DI CARICO: Id FASE 1 Accesso OVEST FASE 2 Accesso SUD Accesso NORD Accesso NORD CAPACITA', TEMPI II Accesso NORD Accesso NORD Accesso NORD Accesso NORD Accesso NORD Accesso NORD	totale Via Fiorino Baccarini Fiorino fp 1.000 1.000 1.000 c= f/S Gr. Corsie RL TL TR MEDI DI ATTESA, LI FASE 2 1	G = So'N'fw'fhv'fg'fp'f Gr. Corsie TR RL TL NBUS 2 1 6 f(v/h) 151 514 165 VELLI DI SERVIZIO Si (v/h) 1659 3256	L (m) 3.50 5.00 3.50 fbb 0.992 0.998 0.976 S (v/h) 3256 1707 1659 gi/C 0.52 0.52	So (v/h) 1900 1900 1900 fa 0.999 0.999 0.999 lc 0.05	N 1 2 1 PRT 0.28 0.01 0.00 CAPi (v/h) 870 1707	11.48 8.20 11.48 PEDS 100 100 100 100	0.983 0.873 0.983 PRTA 0.47 0.83 0.00	% HV 6 1 6 fRT 0.951 0.999 1.000	fHV 0.943 0.993 0.943 PLT 0.00 0.17 0.12	0 0 0 ftT 1.00 0.99 0.99	1.0000 1.0000 1.0000 S (vh) 1659 3256 1707 di [sec] 8.6	LOSi B B		
Accesso NORD Accesso OVEST Accesso SUD Accesso NORD Accesso OVEST Accesso OVEST Accesso SUD NDICI DI CARICO: Ic FASE 1 Accesso OVEST FASE 2 Accesso SUD Accesso NORD CAPACITA', TEMPI II Accesso NORD	totale Via Fiorino Baccarini Fiorino 1.000 1.000 1.000 From Corsie RL TL TR MEDI DI ATTESA, LI FASE 2	G = So'N'fw'fhv'fg'fp'f Gr. Corsie TR RL TL NBUS 2 1 6 f(v/h) 151 514 165 VELLI DI SERVIZIO Si (v/h) 1659	L (m) 3.50 5.00 3.50 fbb 0.992 0.998 0.976 S (v/h) 3256 1707 1659 gi/C 0.52	So (v/h) 1900 1900 1900 fa 0.999 0.999 0.999 lc 0.05	N 1 2 1 PRT 0.28 0.01 0.00 CAPi (v/h) 870	11.48 8.20 11.48 PEDS 100 100 100	0.983 0.873 0.983 PRTA 0.47 0.83 0.00	% HV 6 1 6 fRT 0.951 0.999 1.000	fHV 0.943 0.943 0.943 PLT 0.00 0.17 0.12	0 0 0 ftT 1.00 0.99 0.99	1.0000 1.0000 1.0000 S (v/h) 1659 3256 1707 di [sec]	LOSi B		

Stato di progetto, ora di punta della mattina estiva

OMETRIA DELL'II	NTERSEZIONE	10/60/4	U 50000 (000)
ACCESSO	NORD	SUD	OVEST
Toponimo	Via Fiorino	Via Fiorino	Via Baccarini
Larghezza (m)	3.5	3.5	5
N. corsie	1	1	2

MISURA DELI	FLUSSI				
7111		attraversamento Qat	svolta a dx Qdx	svolta a sx Qsx	totale Qtot
NORD	auto e veic com	335	309		644
100000000000000000000000000000000000000	veic. Pes.	3	3		6
	bus				0
	totale	338	312	0	650
SUD	auto e veic com	494		103	597
3000	veic. Pes.	4		1	5
	bus	1			1
71	totale	499	0	104	603
OVEST	auto e veic com		40	137	177
V.41.	veic. Pes.				0
	bus				0
	totale	0	40	137	177

Livello di servizio	Ritardo totale medio [sec/veic]
A	≤5
В	>5e≤15
C	> 15 e ≤ 25
D	> 25 e ≤ 40
E	>40 e ≤ 60
F	>60

CALCOLO FLUSSI DI	SATURAZIONE: S	= S0'N'fw'fHV"fg"fp"fbb	"fa"fRT"fLT								
	Via	Gr. Corsie	L (m)	S0 (v/h)	N	Loors. (ft)	fw	% HV	fHV	% G	fo
Accesso NORD	Fiorino	TR	3.50	1900	1	11.48	0.983	1	0.991	0	1,0000
Accesso OVEST	Baccarini	RL	5.00	1900	2	8.20	0.873	0	1.000	0	1.0000
Accesso SUD	Fiorino	TL	3.50	1900	1	11.48	0.983	1	0.990	0	1.0000
2	fp	Neus	fbb	fa	PRT	PEDS	PRTA	fRT	PLT	fLT	S (v/h)
Accesso NORD	1.000	0	1.000	0.999	0.28	100	0.48	0.951	0.00	1.00	1758
Accesso OVEST	1.000	0	1.000	0.999	0.01	100	0.23	0.999	0.77	0.96	3187
Accesso SUD	1.000	1	0.996	0.999	0.00	100	0.00	1.000	0.17	0.99	1824

IDICI DI CARICO: los	t/S		1	
FASE 1	Gr. Corsie	f (v/h)	\$ (v/h)	Ic
Accesso OVEST	RL	177	3187	0.06

FASE 2					28							
Accesso SUD	TL	603	1824	0.33]							
Accesso NORD	TR	650	1758	0.37	1							
CAPACITA', TEMPI I	MEDI DI ATTESA, LI	VELLI DI SERVIZIO			-							
	FASE	Si (v/h)	gi/C	Ic	CAPi (v/h)	Xi	d1 [sec]	CF	m	d2 [sec]	di [sec]	LOS
Accesso NORD	2	1758	0.52	0.37	922	0.705	12.3	1.0	16	1.7	14.0	В
Accesso OVEST	1	3187	0.52	0.06	1671	0.106	8.2	1.0	16	0.0	8.2	В
Accesso SUD	2	1824	0.52	0.33	956	0.631	11.6	1.0	16	1.0	12.5	В
	d intersezione	LOSint		ΔLOS								
	12.66	B		-3.90	1							

SUD

OVEST

		St	ato di progetto, ora	di punta della ser	a estiva
GEOMETRIA DELL	INTERSEZIONE	5.50.50.5			
ACCESSO Toponimo	NORD Via Fiorino	SUD Via Fiorino	OVEST Via Baccarini		
Larghezza (m) N. corsie	3.5	3.5	5		
MISURA DEI FLUS	£I	1			
misora del reds	31	attraversamento Qat	svolta a dx Qdx	svolta a sx Qsx	total
NORD	auto e veic com	407	308		715
1500000	veic. Pes.	3	3		6
	bus	1			1

411

534

4

1

539

311

0

26

totale

totale

veic. Pes.

bus

totale

veic. Pes.

auto e veic com

auto e veic com

Livello di servizio	Ritardo totale medio [sec/veic]
A	≤5
В	>5e≤15
С	> 15 e ≤ 25
D	> 25 e ≤ 40
E	>40 e ≤ 60
F	>60

CALCOLO FLUSSI D	SATURAZIONE: S	= S0'N'fw'fHV'fg'fp'ft	ob"fa"fRT"fLT								
	Via	Gr. Corsie	L (m)	S0 (v/h)	N	Loors. (ft)	fw	% HV	fitV	% G	fg
Accesso NORD	Fiorino	TR	3.50	1900	1	11.48	0.983	1	0.990	0	1.0000
Accesso OVEST	Baccarini	RL	5.00	1900	2	8.20	0.873	0	1.000	0	1.0000
Accesso SUD	Fiorino	TL	3.50	1900	1	11.48	0.983	1	0.990	0	1.0000
	fp	Neus	fbb	fa	PRT	PEDS	PRTA	fRT	PLT	fLT	S (v/h)
Accesso NORD	1.000	1	0.996	0.999	0.28	100	0.43	0.950	0.00	1.00	1749
Accesso OVEST	1.000	0	1.000	0.999	0.01	100	0.20	0.998	0.80	0.96	3184
Accesso SUD	1.000	1	0.996	0.999	0.00	100	0.00	1.000	0.11	0.99	1830

1830 0.33

65

66

101

totale 715 6

722

599

5

1

605

127

0

0

127

FASE 1	Gr. Corsie	f (v/h)	S (v/h)	lc.
Accesso OVEST	RL	127	3184	0.04

Accesso NORD	TR	722	1749	0.41								
CAPACITA', TEMPI I	MEDI DI ATTESA, LI	VELLI DI SERVIZIO										
	FASE	Si (v/h)	gi/C	Ic	CAPi (v/h)	Xi	d1 [sec]	CF	m	d2 [sec]	di [sec]	LOS
Accesso NORD	2	1749	0.52	0.41	917	0.787	13.2	1.0	16	3.2	16.4	С
Accesso OVEST	1	3184	0.52	0.04	1670	0.076	8.1	1.0	16	0.0	8.1	В
Accesso SUD	2	1830	0.52	0.33	959	0.631	11.6	1.0	16	1.0	12.5	В
	d intersezione	LOSint.		ΔLOS								

-2.22

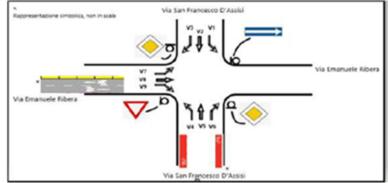
Accesso SUD

Manovra	Flusso [veic/h]	Capacità arco [veic/h]
V1	15	1015
V2	124	1015
V3	60	1015
V4	94	761
V5	241	761
V6	0	761
V7	49	449
V8	79	449
V9	139	449
V10	0	
V11	0	
V12	0	

Vc,9	154
Cp,9	1157
Cm,9	1157

Vc,4	184
Cp,4	1401
Cm,4	1401

Vc,1	241
Cp,1	1316
Cm,1	1316


Vc,8	564
Cp,8	552
p0,4	0.93
p0,1	0.99
f,8	0.92
Cm,8	509

Vc,7	504
Cp.7	541
p0,1	0.99
p0,4	0.93
ff	0.92
Cm,7	499

Stato di progetto, ora di punta della mattina invernale

via Ribera - via S. Francesco d'Assisi (intersezione non semaforizzata).

	Manovra	Strada principale a due corsie	Strada principale a quattro corsie	Follow-up time t _i (sec)
I	Svolta a sinistra, strada principale	5	5.5	2.1
	Svolta a destra, strada secondaria	5.5	5.5	2.6
	Attraversamento, strada secondaria	6	6.5	3.3
ı	Svolta a sinistra, strada secondaria	6.5	7	3.4

Capacità ramo 2 invariata. Nello scenario di progetto la sosta, attualmente presente su ambo i lati, viene eliminata da un lato

Livello di servizio	Ritardo totale medio [sec/veic]
A	≤5
В	>5 e ≤ 10
C	> 10 e ≤ 20
D	> 20 e ≤ 30
E	> 30 e ≤ 45
F	>45

c ramo1	1033
c ramo2	873
c ramo3	715
c ramo4	

	Ritardo singola manovra	Secondi	LOS	Ritardo singola manovra	Secondi	LOS	Ritardo singolo ramo	Secondi
Γ	D1	3.5	A	D7	5.4	В	Dramo1	3.9
	D2	4.0	A	D8	5.7	В	Dramo2	5.4
	D3	3.7	A	D9	6.3	В	Dramo3	5.9
	D4	4.6	A	D10			Dramo4	0.0
	D5	5.7	В	D11				
	D6	4.1	A	D12				
_	Ritardo medio intersezione			5.2				
	[Variazione scenario atti	uale	0.3		

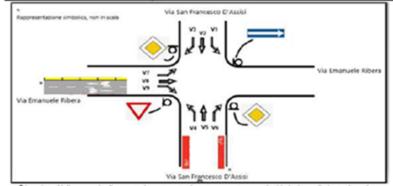
Manovra	Flusso [veic/h]	Capacità arco [veic/h]
V1	113	1015
V2	599	1015
V3	54	1015
V4	75	761
V5	307	761
V6	0	761
V7	10	449
V8	110	449
V9	298	449
V10	0	
V11	0	
V12	0	
Vc,9	626	
Cp,9	667	
Cm,9	667	
Vc,4	653	
Cp,4	837	
Cm 4	837	

Cp.1	1224
Cm.1	1224

Vc,8	1175
Cp,8	264
p0,4	0.91
p0,1	0.91
f,8	0.83
Cm,8	218

Vc,7	1121
Cp.7	238
p0,1	0.91
p0,4	0.91
17	0.83
Cm,7	196

via Ribera - via S. Francesco d'Assisi (intersezione non semaforizzata).


1041

417

c ramo1

c ramo3

	Manovra	Strada principale a due corsie	Strada principale a quattro corsie	Follow-up time t _t (sec)
[Svolta a sinistra, strada principale	5	5.5	2.1
F	Svolta a destra, strada secondaria	5.5	5.5	2.6
	Attraversamento, strada secondaria	6	6.5	3.3
1	Svolta a sinistra, strada secondaria	6.5	7	3.4

Capacità ramo 2 invariata. Nello scenario di progetto la sosta, attualmente presente su ambo i lati, viene eliminata da un lato

Livello di servizio	Ritardo totale medio [sec/veic]
A	≤5
В	>5 e ≤ 10
C	> 10 e ≤ 20
D	> 20 e ≤ 30
E	> 30 e ≤ 45
F	>45

Ritardo singola manovra	Secondi	LOS	Ritardo singola manovra	Secondi	LOS	Ritardo singolo ramo	Secondi
D1	3.9	A	D7	8.8	В	Dramo1	7.2
D2	8.1	В	D8	11.7	С	Dramo2	7.2
D3	3.6	A	D9	29.4	D	Dramo3	24.3
D4	5.1	В	D10	-		Dramo4	0.0
D5	7.7	В	D11				
D6	4.6	A	D12				
			Ritardo medio intersezi	one	11.7		

Variazione scenario attuale

Manager	Change facility	Canadal area for last		Clair di p	. ogeno, ora or p	unta della mattina estiva				4
Manovra V1	Flusso [veic/h]	Capacità arco [veic/h] 1015						One selfent (cos)		1
VI	۵	1010	via F	Ribera - vi	a S.			Gap critico t _g (sec)		4
V2	131	1015	Franc	cesco d'As	ssisi	Manovra	Strada principale a due corsie	Strada principale a quattro corsie	Follow-up time t _i (sec)	
V3	71	1015	(inte	rsezione i	non	Svolta a sinistra, strada principale	5	5.5	2.1]
V4	76	761		naforizzat	۵۱	Svolta a destra, strada secondaria	5.5	5.5	2.6	1
V5	308	761	Sen	ildi Oli iZZati	a).	Attraversamento, strada secondaria	6	6.5	3.3	1
V6	0	761				Svolta a sinistra, strada secondaria	6.5	7	3.4	J
٧7	36	449				•	Via San Francesco D'A	scisi		_
V8	95	449				Rappresentatione simbolica, non in scale	1 1		- 1	
V9	142	449					V3 V2 V1	\longrightarrow	- 1	
V10	0						<u>>></u>		- 1	
V11	0							<u> </u>		
V12	0	•	J			V	=		Via Emanuele Ribera	
16. A	467	1				w	, _			
Vc,9 Cp,9	167 1140					Via Emanuele Ribera	DELEG	1 ^	· I	
Cm.9	1140					V	_ \\ \\ \ \ \ \ \ \ \ \ \ \ \	(◇)	- 1	
Cm,9	1140	J					V4 V5 V6		- 1	
Vc.4	202	1					€ .		- 1	
Cp.4	1373						2		- 1	
Cm.4	1373						Via San Francesco D'A	455	- 1	
		1			Capacità re	amo 2 invariata. Nello scenario di progetto la			eliminata da un lato	
Vc,1	308	1								
Cp,1	1223	1				Livello di servizio		Ritardo totale	medio [sec/veic]	1
Cm,1	1223	1				A			£5	1
		•				В		>5	e ≤ 10	1
Vc,8	647					C		> 10	e ≤ 20	1
Cp,8	499		c ramo1	1034]	D		> 20	e ≤ 30	1
p0,4	0.94		c ramo2	835]	E		> 30	e≤45	1
p0,1	0.98		c ramo3	667]	F		>	45	
f,8	0.93		c ramo4	-						_
Cm,8	462									
										_
Vc,7	576		Ritardo singola manovra	Secondi	LOS	Ritardo singola manovra	Secondi	LOS	Ritardo singolo ramo	l
Cp,7	492	1	D1	3.6	Α	D7	5.7	В	Dramo1	T
p0,1	0.98		D2	4.0	Α	D8	6.3	В	Dramo2	Γ
p0,4	0.94		D3	3.7	A	D9	6.9	В	Dramo3	Γ
f7	0.93		D4	4.7	A	D10			Dramo4	Γ
Cm,7	455		D5	6.8	В	D11				
			D6	4.3	A	D12]	
						Ritardo medio intersez	tione	5.8		
						Variazione scenario at	tuale	0.7	1	

	Stato di progetto, ora di punta della sera estiva									
Manovra	Flusso [veic/h]	Capacità arco [veic/h]								•
V1	150	1015	1		_			Gap critico t _g (sec)		1
V2	773	1015		via Ribera - via S. Francesco d'Assisi		Manovra	Strada principale a due corsie	Strada principale a quattro corsie	Follow-up time t _i (sec)]
V3	30	1015]			Svolta a sinistra, strada principale	5	5.5	2.1	1
V4	5	761] (inte	ersezione	non	Svolta a destra, strada secondaria	5.5	5.5	2.6	1
V5	497	761	ser	naforizzat	a).	Attraversamento, strada secondaria	6	6.5	3.3	1
V6	0	761]		~/.	Svolta a sinistra, strada secondaria	6.5	7	3.4]
٧7	12	449]			•	Via San Francesco D'As	sisi		•
V8	120	449]			Rappresentatione simbolica, non in scale	1 1		- 1	
V9	268	449				100	V3 V2 V1	\Longrightarrow	- 1	
V10	0		1				<u>> 0 </u>		- 1	
V11 V12	0	•	-					<u> </u>	Via Emanuele Ribera	
VIZ	U	•]				: ₹		Via Emanuele Ribera	
Vc.9	788					v	<u>,</u> x			
Cp.9	552					Via Emanuele Ribera	D) KANG	2		
Cm.9	552					· ·	1111		- 1	
						1	W 42 42		- 1	
Vc,4	803					1			- 1	
Cp,4	710					I.			- 1	
Cm,4	710						Via San Francesco D'A	15:51		
					Capacità r	amo 2 invariata. Nello scenario di progetto I	a sosta, attualmente preser	nte su ambo i lati, viene	eliminata da un lato	
Vc,1	497									
Cp,1	994					Livello di servizio		Ritardo totale	medio (sec/veic)	1
Cm,1	994					A			≤5	
	4470					В			e ≤ 10	1
Vc,8	1470 185			4040	1	С			e ≤ 20	
Cp,8 p0,4	0.99		c ramo1	1012 761		D E			e ≤ 45	
p0,4 p0,1	0.85		c ramo2	297		E			45	
f,8	0.84		c ramo4	-		P P			140	
Cm.8	156		Cranos		ı					
- mile	.50									
	4445		Ritardo singola							L
Vc,7	1440		manovra	Secondi	LOS	Ritardo singola manovra	Secondi	LOS	Ritardo singolo ramo	S
Cp,7	155		D1	4.2	A	D7	12.6	С	Dramo1	
p0,1	0.85		D2	14.8	С	D8	20.3	D	Dramo2	
p0,4	0.99		D3	3.7	A	D9	90.2	F	Dramo3	
f7	0.84		D4	4.8	A	D10			Dramo4	
Cm,7	131		D5	13.5	С	D11			1	
			D6	4.7	A	D12	•		1	
						Ritardo medio interse		24.6		
						Variazione scenario a	ttuale	6.5	J	

Metodo setra

Scenario di progetto: ora di punta della mattina invernale

Qu flusso in uscita dall'anello Qe flusso in entrata all'anello Qc flusso circolante nell'anello ANN larghezza anello

SEP larghezza isola spartitraffico ENT larghezza corsia d'entrata dietro la prima auto

SP112-via Berlinguer-via Mons. Salvucci (rotatoria)

C capacità entrata, minimo valore Qe che da luogo alla presenza permanete di veicoli in attesa di immettersi

Qu' = Qu'(15-SEP)/15 traffico uscente equivalente

Qd = (Qc+2/3'Qu')'[1-0.085'(ANN-8)] traffico complessivo di distrurbo

C = (1330-0.7°Qd)*[1+0.1*(ENT-3.5)] capacità del braccio

Q' = Qel[1+0.1'(ENT-3.5)] traffico equivalente

RC = (0.8°C)-Qe riserva di capacità dell'entrata
RC(%)= (0.8C-Qe)(0.8C*100 Capacità di riserva percentuale

Caratteristiche geometriche

	Culation busine geometricine					
[RAMO 1	RAMO 2	RAMO 3	RAMO 4	
[SEP(m)	10.3	12.2	8.4	14.2	
[ANN(m)	8.7	8.7	8.7	8.7	
[ENT(m)	4.0	4.0	3.8	3.5	

CAPACITA' DEI SINGOLI RAMI

	RAMO 1	RAMO 2	RAMO 3	RAMO 4
Qe(veic/h)	599	532	558	573
Qu(veic/h)	364	475	648	776
Qc(veic/h)	661	786	670	451
Qu'(veic/h)	114	89	285	41
Qd(veic/h)	693	795	809	450
C(veic/h)	887	812	787	1015
RC(veic/h)	111	118	71	239
RC(%)	16%	18%	11%	29%
Q*	570	507	542	573
X	0.68	0.65	0.71	0.56
d	15.8	16.0	19.1	10.9
d intersezione	15.4	∆ d int	-1.4	

parametro di capacità per indicazione di esercizio della rotatoria

Riserva di capacità (%)	Condizione di esercizio
RC > 30%	fluido
15 < RC ≤ 30%	soddisfacente
0 < RC ≤ 15%	aleatorio
RC ≤ 0%	saturo/critico

Livello di servizio	Ritardo totale medio [sec/veic]
A	≤ 10
В	> 10 e ≤ 15
С	> 15 e ≤ 25
D	> 25 e ≤ 35
E	> 35 e ≤ 50
F	> 50

Metodo setra

Scenario di progetto: ora di punta della sera invernale

Qu flusso in uscita dall'anello Qe flusso in entrata all'anello

Qc flusso circolante nell'anello

ANN larghezza anello

SEP larghezza isola spartitraffico ENT larghezza corsia d'entrata dietro la prima auto SP112-via Berlinguer-via Mons. Salvucci (rotatoria)

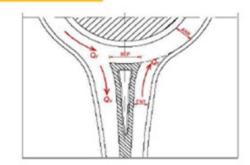
 capacità entrata, minimo valore Qe che da luogo alla presenza permanete di veicoli in attesa di immettersi

Qu' = Qu'(15-SEP)/15 traffico uscente equivalente

Qd = (Qc+2/3'Qu')'[1-8.885'(ANN-8)] traffico complessivo di distrurbo

C = (1330-0.7°Qd)*[1+0.1*(ENT-3.5)] capacità del braccio

Q' = Qe[[1+0.1*(ENT-3.5)] traffico equivalente


RC = (0.8°C)-Qe riserva di capacità dell'entrata
RC(%)= (0.8°C-Qe)0.8°C100 Capacità di riserva percentuale

Caratteristiche geometriche

	RAMO 1	RAMO 2	RAMO 3	RAMO 4
SEP(m)	10.3	12.2	8.4	14.2
ANN(m)	8.7	8.7	8.7	8.7
ENT(m)	4.0	4.0	3.8	3.5

CAPACITA' DEI SINGOLI RAMI

	RAMO 1	RAMO 2	RAMO 3	RAMO 4
Qe(veic/h)	565	525	605	616
Qu(veic/h)	426	475	853	557
Qc(veic/h)	783	873	545	593
Qu'(veic/h)	133	89	375	30
Qd(veic/h)	820	877	748	576
C(veic/h)	794	752	831	927
RC(veic/h)	70	77	60	125
RC(%)	11%	13%	9%	17%
Q.	538	500	587	616
X	0.71	0.70	0.73	0.66
d	19.1	19.1	19.3	14.8
d intersezione	18.0	∆ d int	-3.6	

parametro di capacità per indicazione di esercizio della rotatoria

Riserva di capacità (%)	Condizione di esercizio
RC > 30%	fluido
15 < RC ≤ 30%	soddisfacente
0 < RC ≤ 15%	aleatorio
RC ≤ 0%	saturo/critico

Corsia ciclabile in sede propria

Livello di servizio	Ritardo totale medio [sec/veic]
A	≤ 10
В	> 10 e ≤ 15
С	> 15 e ≤ 25
D	> 25 e ≤ 35
E	> 35 e ≤ 50
	> 50

15

Metodo setra

Scenario di progetto: ora di punta della mattina estiva

flusso in uscita dall'anello

flusso in entrata all'anello flusso circolante nell'anello

larghezza anello larghezza isola spartitraffico SP112-via Berlinguer-via Mons. Salvucci (rotatoria)

capacità entrata, minimo valore Qe che da luogo alla presenza permanete di veicoli in attesa di immettersi

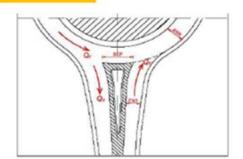
ENT larghezza corsia d'entrata dietro la prima auto

Qu' = Qu '(15-SEP)/15 traffico uscente equivalente

(Qc+2/3"Qu")"[1-0.085"(ANN-8)] Qd = traffico complessivo di distrurbo

(1330-0.7°Qd)"[1+0.1"(ENT-3.5)] capacità del braccio

Qe/[1+0.1*(ENT-3.5)] traffico equivalente


 $RC = (0.8^{\circ}C)-Qe$ riserva di capacità dell'entrata RC(%)= (0.8C-Qe)/0.8C*100 Capacità di riserva percentuale

Caratteristiche geometriche

	RAMO 1	RAMO 2	RAMO 3	RAMO 4
SEP(m)	10.3	12.2	8.4	14.2
ANN(m)	8.7	8.7	8.7	8.7
ENT(m)	4.0	4.0	3.8	3.5

CAPACITA' DEI SINGOLI RAMI

	RAMO 1	RAMO 2	RAMO 3	RAMO 4
Qe(veic/h)	422	499	573	487
Qu(veic/h)	336	565	524	522
Qc(veic/h)	645	503	478	493
Qu'(veic/h)	105	105	231	28
Qd(veic/h)	673	539	594	481
C(veic/h)	902	1000	942	993
RC(veic/h)	300	301	180	308
RC(%)	42%	38%	24%	39%
O.	402	475	556	487
X	0.47	0.50	0.61	0.49
d	9.8	9.7	12.8	9.6
d intersezione	10.6	∆ d int	-1.2	

parametro di capacità per indicazione di esercizio della rotatoria

Riserva di capacità (%)	Condizione di esercizio
RC > 30%	fluido
15 < RC ≤ 30%	soddisfacente
0 < RC ≤ 15%	aleatorio
RC ≤ 0%	saturo/critico

Livello di servizio	Ritardo totale medio [sec/veic]
A	≤ 10
В	> 10 e ≤ 15
С	> 15 e ≤ 25
D	> 25 e ≤ 35
E	> 35 e ≤ 50
g g	>50

ANN

Metodo setra Scenario di progetto: ora di punta della sera estiva

SP112-via Berlinguer-via Mons. Salvucci (rotatoria)

SEP larghezza isola spartitraffico ENT larghezza corsia d'entrata dietro la prima auto

flusso in uscita dall'anello flusso in entrata all'anello

flusso circolante nell'anello

larghezza anello

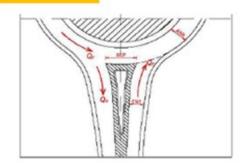
 capacità entrata, minimo valore Qe che da luogo alla presenza permanete di veicoli in attesa di immettersi

Qu' = Qu'(15-SEP)/15 traffico uscente equivalente

Qd = (Qc+2/3"Qu/)"[1-0.085"(ANN-8)] traffico complessivo di distrurbo

C = (1330-0.7°Qd)*[1+0.1*(ENT-3.5)] capacità del braccio

Q' = Qe[[1+0.1*(ENT-3.5)] traffico equivalente


RC = (0.8°C)-Qe riserva di capacità dell'entrata
RC(%)= (0.8C-Qe)(0.8C*100 Capacità di riserva percentuale

Caratteristiche geometriche

	RAMO 1	RAMO 2	RAMO 3	RAMO 4
SEP(m)	10.3	12.2	8.4	14.2
ANN(m)	8.7	8.7	8.7	8.7
ENT(m)	4.0	4.0	3.8	3.5

CAPACITA' DEI SINGOLI RAMI

	RAMO 1	RAMO 2	RAMO 3	RAMO 4
Qe(veic/h)	567	536	554	603
Qu(veic/h)	337	485	815	623
Qc(veic/h)	726	809	530	460
Qu'(veic/h)	106	91	359	33
Qd(veic/h)	749	818	723	453
C(veic/h)	846	796	848	1013
RC(veic/h)	110	100	125	207
RC(%)	16%	16%	18%	26%
Q.	540	510	538	603
X	0.67	0.67	0.65	0.60
d	16.1	17.1	15.4	11.7
intersezione	15.0	∆ d int	-2.3	

parametro di capacità per indicazione di esercizio della rotatoria

Riserva di capacità (%)	Condizione di esercizio
RC > 30%	fluido
15 < RC ≤ 30%	soddisfacente
0 < RC ≤ 15%	aleatorio
RC ≤ 0%	saturo/critico

Livello di servizio	Ritardo totale medio [sec/veic]
A	≤ 10
В	> 10 e ≤ 15
С	> 15 e ≤ 25
D	> 25 e ≤ 35
E	> 35 e ≤ 50
5	>50

